Does HRT, hormone replacement therapy, have any place in treating a woman’s glaucoma
0
Entering edit mode
13 months ago
Mary Beth • 350
@beth

Bioidentical hormone replacement therapy does have a place in glaucoma as estrogens are involved in regulating quantity and quality(health) of mitochondria, nitric oxide, calcium regulation, reactive oxygen species, inflammation, and so much more. Supplement hormones that test low is more than nice—it might be helpful in women seeking advantages for long-game glaucoma.

After I read an article this morning on a substance post, I felt compelled to share. “Estrogen protects mitochondria from oxidative damage. (Mitochondria: Target organelles for estrogen action. Postepy Hig Med Dosw (Online). 2017 Jun 8;71(0):454-465)” Here is the abstract: Mitochondria: Target organelles for estrogen action

Małgorzata Chmielewska 1 , Izabela Skibińska 1 , Małgorzata Kotwicka 1 Affiliations expand PMID: 28665276 DOI: 10.5604/01.3001.0010.3828 Free article Abstract

Estrogens belong to a group of sex hormones, which have been shown to act in multidirectional way. Estrogenic effects are mediated by two types of intracellular receptors: estrogen receptor 1 (ESR1) and estrogen receptor 2 (ESR2). There are two basic mechanisms of estrogen action: 1) classical-genomic, in which the ligand-receptor complex acts as a transcriptional factor and 2) a nongenomic one, which is still not fully understood, but has been seen to lead to distinct biological effects, depending on tissue and ligand type. It is postulated that nongenomic effects may be associated with membrane signaling and the presence of classical nuclear receptors within the cell membrane. Estrogens act in a multidirectional way also within cell organelles. It is assumed that there is a mechanism which manages the migration of ESR into the mitochondrial membrane, wherein the exogenous estrogen affect the morphology of mitochondria. Estrogen, through its receptor, can directly modulate mitochondrial gene expression. Moreover, by regulating the level of reactive oxygen species, estrogens affect the biology of mitochondria. The considerations presented in this paper indicate the pleiotropic effects of estrogens, which represent a multidirectional pathway of signal transduction.“ [end of abstract ]

The article shared below has over 100 citations that also contain helpful insights. Until researchers can connect glaucoma with overall mitochondrial optimal health, we must seek optimal body functioning on our own. There is no single exercise routine, way of eating, or set of supplements that lead us to optimal body functioning. It is an all of the above—everything that makes our bodies function at their best can be a factor in addressing and even modifying glaucoma - its progression and damages.

https://phmd.pl/resources/html/article/details?id=152495&language=en

Abstract Estrogens belong to a group of sex hormones, which have been shown to act in multidirectional way. Estrogenic effects are mediated by two types of intracellular receptors: estrogen receptor 1 (ESR1) and estrogen receptor 2 (ESR2). There are two basic mechanisms of estrogen action: 1) classical-genomic, in which the ligand-receptor complex acts as a transcriptional factor and 2) a nongenomic one, which is still not fully understood, but has been seen to lead to distinct biological effects, depending on tissue and ligand type. It is postulated that nongenomic effects may be associated with membrane signaling and the presence of classical nuclear receptors within the cell membrane. Estrogens act in a multidirectional way also within cell organelles. It is assumed that there is a mechanism which manages the migration of ESR into the mitochondrial membrane, wherein the exogenous estrogen affect the morphology of mitochondria. Estrogen, through its receptor, can directly modulate mitochondrial gene expression. Moreover, by regulating the level of reactive oxygen species, estrogens affect the biology of mitochondria. The considerations presented in this paper indicate the pleiotropic effects of estrogens, which represent a multidirectional pathway of signal transduction.

References

  1. Ábrahám I.M., Todman M.G., Korach K.S., Herbison A.E.: Criticalin vivo roles for classical estrogen receptors in rapid estrogenactions on intracellular signaling in mouse brain. Endocrinology,2004; 145: 3055-3061 Google Scholar

  2. Acconcia F., Ascenzi P., Bocedi A., Spisni E., Tomasi V., TrentalanceA., Visca P., Marino M.: Palmitoylation-dependent estrogen receptorα membrane localization: regulation by 17bβ-estradiol. Mol. Biol.Cell., 2005; 16: 231-237 Google Scholar

  3. Acconcia F., Ascenzi P., Fabozzi G., Visca P., Marino M.: S-palmitoylationmodulates human estrogen receptor-α functions. Biochem.Biophys. Res. Commun., 2004; 316: 878-883 Google Scholar

  4. Acconcia F., Bocedi A., Ascenzi P., Marino M.: Does palmitoylationtarget estrogen receptors to plasma membrane caveolae? IUBMBLife, 2003; 55: 33-35 Google Scholar

  5. Alkhalaf M., Chaminadas G., Propper A.Y., Adessi G.L.: Ultrastructuralchanges induced by oestradiol-17 β, progesterone and oestrone-3-sulphatein guinea-pig endometrial glandular cells grownin primary culture. J. Endocrinol., 1989; 122: 439-444 Google Scholar

  6. Araújo G.W., Beyer C., Arnold S.: Oestrogen influences on mitochondrialgene expression and respiratory chain activity in corticaland mesencephalic astrocytes. J. Neuroendocrinol., 2008; 20: 930-941 7 Arnold S., Victor M.B., Beyer C.: Estrogen and the regulation ofmitochondrial structure and function in the brain. J. Steroid Biochem.Mol. Biol., 2012; 131: 2-9 Google Scholar

  7. cell mitochondrial proteins and recombinant human estrogenreceptors α and β to human mitochondrial DNA estrogen responseelements. J. Cell. Biochem., 2004; 93: 358-373 Google Scholar

  8. Bettini E., Maggi A.: Estrogen induction of cytochrome c oxidasesubunit III in rat hippocampus. J. Neurochem., 1992; 58: 1923-1929 Google Scholar

  9. Boonyaratanakornkit V.: Scaffolding proteins mediating membrane-initiatedextra-nuclear actions of estrogen receptor. Steroids,2011; 76: 877-884 Google Scholar

  10. Cammarata P.R., Chu S., Moor A., Wang Z., Yang S.H., SimpkinsJ.W.: Subcellular distribution of native estrogen receptor α and βsubtypes in cultured human lens epithelial cells. Exp. Eye Res., 2004;78: 861-871 Google Scholar

  11. Cammarata P.R., Flynn J., Gottipati S., Chu S., Dimitrijevich S.,Younes M., Skliris G., Murphy L.C.: Differential expression and comparativesubcellular localization of estrogen receptor β isoforms invirally transformed and normal cultured human lens epithelial cells.Exp. Eye Res., 2005; 81: 165-175 Google Scholar

  12. Celojevic D., Petersen A., Karlsson J.O., Behndig A., ZetterbergM.: Effects of 17β-estradiol on proliferation, cell viability and intracellularredox status in native human lens epithelial cells. Mol.Vis., 2011; 17: 1987–1996 Google Scholar

  13. Chambliss K.L., Shaul P.W.: Rapid activation of endothelial NOsynthase by estrogen: Evidence for a steroid receptor fast-actioncomplex (SRFC) in caveolae. Steroids, 2002; 67: 413-419 Google Scholar

  14. Chambliss K.L., Simon L., Yuhanna I.S., Mineo C., Shaul P.W.:Dissecting the basis of nongenomic activation of endothelial nitricoxide synthase by estradiol: role of ERα domains with known nuclearfunctions. Mol. Endocrinol., 2005; 19: 277-289 Google Scholar

  15. Chambliss K.L., Yuhanna I.S., Anderson R.G., Mendelsohn M.E.,Shaul P.W.: ERβ has nongenomic action in caveolae. Mol. Endocrinol.,2002; 16: 938-946 Google Scholar

  16. Chang C.Y., Norris J.D., Grøn H., Paige L.A., Hamilton P.T., KenanD.J., Fowlkes D., McDonnell D.P.: Dissection of the LXXLL nuclearreceptor-coactivator interaction motif using combinatorial peptidelibraries: discovery of peptide antagonists of estrogen receptors αand β. Mol. Cell. Biol., 1999; 19: 8226-8239 Google Scholar

  17. Chen J.Q., Cammarata P.R., Baines C.P., Yager J.D.: Regulation ofmitochondrial respiratory chain biogenesis by estrogens/estrogenreceptors and physiological, pathological and pharmacological implications.Biochim. Biophys. Acta, 2009; 1793: 1540-1570 Google Scholar

  18. Chen J.Q., Delannoy M., Cooke C., Yager J.D.: Mitochondrial localizationof ERα and ERβ in human MCF7 cells. Am. J. Physiol. Endocrinol.Metab., 2004; 286: E1011-E1022 Google Scholar

  19. Chen J.Q., Eshete M., Alworth W.L., Yager J.D.: Binding of MCF- Google Scholar

  20. Chen J., Gokhale M., Li Y., Trush M.A., Yager J.D.: Enhanced levelsof several mitochondrial mRNA transcripts and mitochondrialsuperoxide production during ethinyl estradiol-induced hepatocarcinogenesisand after estrogen treatment of HepG2 cells. Carcinogenesis,1998; 19: 2187-2193 Google Scholar

  21. Chen Z., Yuhanna I.S., Galcheva-Gargova Z., Karas R.H., MendelsohnM.E., Shaul P.W.: Estrogen receptor α mediates the nongenomicactivation of endothelial nitric oxide synthase by estrogen.J. Clin. Invest., 1999; 103: 401-406 Google Scholar

  22. Christensen A., Micevych P.: CAV1 siRNA reduces membraneestrogen receptor-α levels and attenuates sexual receptivity. Endocrinology,2012; 153: 3872-3877 Google Scholar

  23. Ciucci A., Zannoni G.F., Travaglia D., Scambia G., Gallo D.: Mitochondrialestrogen receptor β2 drives antiapoptotic pathways inadvanced serous ovarian cancer. Hum. Pathol., 2015; 46: 1138-1146 Google Scholar

  24. Davis P.J., Lin H.Y., Mousa S.A., Luidens M.K., Hercbergs A.A.,Wehling M., Davis F.B.: Overlapping nongenomic and genomic actionsof thyroid hormone and steroids. Steroids, 2011; 76: 829-833 Google Scholar

  25. Deng H., Zhang X.T., Wang M.L., Zheng H.Y., Liu L.J., Wang Z.Y.:ER-α36-mediated rapid estrogen signaling positively regulates ERpositivebreast cancer stem/progenitor cells. PLoS One, 2014; 9:e88034 Google Scholar

  26. Denger S., Reid G., Kos M., Flouriot G., Parsch D., Brand H., KorachK.S., Sonntag-Buck V., Gannon F.: ERα gene expression in humanprimary osteoblasts: evidence for the expression of two receptorproteins. Mol. Endocrinol., 2001; 15: 2064-2077 Google Scholar

  27. Dufy B., Vincent J.D., Fleury H., Du Pasquier P., Gourdji D., TixierVidalA.: Membrane effects of thyrotropin-releasing hormone andestrogen shown by intracellular recording from pituitary cells. Science,1979; 204: 509-511 Google Scholar

  28. Endo T., Yamano K.: Transport of proteins across or into themitochondrial outer membrane. Biochim. Biophys. Acta, 2010; 1803:706-714 Google Scholar

  29. Endo T., Yamano K., Kawano S.: Structural insight into the mitochondrialprotein import system. Biochim. Biophys. Acta, 2011;1808: 955-970 Google Scholar

  30. Falkenstein E., Norman A.W., Wehling M.: Mannheim classificationof nongenomically initiated (rapid) steroid action(s). J. Clin.Endocrinol. Metab., 2000; 85: 2072-2075 Google Scholar

  31. Felty Q., Roy D.: Estrogen, mitochondria, and growth of cancerand non-cancer cells. J. Carcinog., 2005; 4: 1 Google Scholar

  32. Ferramosca A., Zara V.: Biogenesis of mitochondrial carrier proteins:molecular mechanisms of import into mitochondria. Biochim.Biophys. Acta, 2013; 1833: 494-502 Google Scholar

  33. Figtree G.A., McDonald D., Watkins H., Channon K.M.: Truncatedestrogen receptor α 46-kDa isoform in human endothelial cells: relationshipto acute activation of nitric oxide synthase. Circulation,2003; 107: 120-126 Google Scholar

  34. Flouriot G., Brand H., Denger S., Metivier R., Kos M., Reid G.,Sonntag-Buck V., Gannon F.: Identification of a new isoform of the human estrogen receptor-α (hER-α) that is encoded by distinct transcriptsand that is able to repress hER-α activation function 1. EMBOJ., 2000; 19: 4688-4700 Google Scholar

  35. Fox E.M., Andrade J., Shupnik M.A.: Novel actions of estrogento promote proliferation: integration of cytoplasmic and nuclearpathways. Steroids, 2009; 74: 622-627 Google Scholar

  36. Galluzzo P., Caiazza F., Moreno S., Marino M.: Role of ERβ palmitoylationin the inhibition of human colon cancer cell proliferation.Endocr. Relat. Cancer, 2007; 14: 153-167 Google Scholar

  37. Gilad L.A., Schwartz B.: Association of estrogen receptor β withplasma-membrane caveola components: Implication in control ofvitamin D receptor. J. Mol. Endocrinol., 2007; 38: 603-618 Google Scholar

  38. Girard B.J., Daniel A.R., Lange C.A., Ostrander J.H.: PELP1: a reviewof PELP1 interactions, signaling, and biology. Mol. Cell. Endocrinol.,2014; 382: 642-651 Google Scholar

  39. Goffart S., Wiesner R.J.: Regulation and co-ordination of nucleargene expression during mitochondrial biogenesis. Exp. Physiol.,2003; 88: 33-40 Google Scholar

  40. Gonugunta V.K., Miao L., Sareddy G.R., Ravindranathan P., VadlamudiR., Raj G.V.: The social network of PELP1 and its implications inbreast and prostate cancers. Endocr. Relat. Cancer, 2014; 21: T79-T86 Google Scholar

  41. Grossman A., Oppenheim J., Grondin G., St Jean P., BeaudoinA.R.: Immunocytochemical localization of the [3H]estradiol-bindingprotein in rat pancreatic acinar cells. Endocrinology, 1989; 124:2857-2866 Google Scholar

  42. Guido C, Perrotta I, Panza S, Middea E, Avena P, Santoro M,Marsico S, Imbrogno P, Ando S, Aquila S.: Human sperm physiology:estrogen receptor α (ERα) and estrogen receptor β (ERβ) influencesperm metabolism and may be involved in the pathophysiologyof varicocele-associated male infertility. J. Cell. Physiol., 2011;226: 3403-3412 Google Scholar

  43. Hall A.R., Burke N., Dongworth R.K., Hausenloy D.J.: Mitochondrialfusion and fission proteins: novel therapeutic targets for combatingcardiovascular disease. Br. J. Pharmacol., 2014; 171: 1890-1906 Google Scholar

  44. Hammes S.R., Levin E.R.: Minireview: Recent advances in extranuclearsteroid receptor actions. Endocrinology, 2011; 152: 4489-4495 Google Scholar

  45. Herrick S.P., Waters E.M., Drake C.T., McEwen B.S., Milner T.A.:Extranuclear estrogen receptor β immunoreactivity is on doublecortin-containingcells in the adult and neonatal rat dentate gyrus.Brain Res., 2006; 1121: 46-58 Google Scholar

  46. Higuchi T., Gohno T., Nagatomo T., Tokiniwa H., Niwa T., HoriguchiJ., Oyama T., Takeyoshi I., Hayashi S.I.: Variation in use of estrogenreceptor-α gene promoters in breast cancer compared byquantification of promoter-specific messenger RNA. Clin. BreastCancer, 2014; 14: 249-257 Google Scholar

  47. Horvat A., Petrović S., Nedeljković N., Martinović J.V., NikezićG.: Estradiol affect Na-dependent Ca2+ efflux from synaptosomalmitochondria. Gen. Physiol. Biophys., 2000; 19: 59-71 Google Scholar

  48. Ishii H., Kobayashi M., Sakuma Y: Alternative promoter usageand alternative splicing of the rat estrogen receptor α gene generatenumerous mRNA variants with distinct 5’-ends. J. Steroid Biochem.Mol. Biol., 2010; 118: 59-69 Google Scholar

  49. Johann S., Dahm M., Kipp M., Beyer C., Arnold S.: Oestrogenregulates mitochondrial respiratory chain enzyme transcription inthe mouse spinal cord. J. Neuroendocrinol., 2010; 22: 926-935 Google Scholar

  50. Kelly M.J., Levin E.R.: Rapid actions of plasma membrane estrogenreceptors. Trends Endocrinol. Metab., 2001; 12: 152-156 Google Scholar

  51. Kim H.P., Lee J.Y., Jeong J.K., Bae S.W., Lee H.K., Jo I.: Nongenomicstimulation of nitric oxide release by estrogen is mediatedby estrogen receptor α localized in caveolae. Biochem. Biophys. Res.Commun., 1999; 263: 257-262 Google Scholar

  52. Kim K.H., Toomre D., Bender J.R.: Splice isoform estrogen receptors as integral transmembrane proteins. Mol. Biol. Cell, 2011;22: 4415-4423 Google Scholar

  53. Kim K.H., Young B.D., Bender J.R.: Endothelial estrogen receptorisoforms and cardiovascular disease. Mol. Cell. Endocrinol., 2014;389: 65-70 Google Scholar

  54. Kiss A.L., Turi Á., Müllner N., Kovács E., Botos E., Greger A.:Oestrogen-mediated tyrosine phosphorylation of caveolin-1 and itseffect on the oestrogen receptor localisation: an in vivo study. Mol.Cell. Endocrinol., 2005; 245: 128-137 Google Scholar

  55. Klinge C.M.: Estrogenic control of mitochondrial function andbiogenesis. J. Cell. Biochem., 2008; 105: 1342-1351 Google Scholar

  56. Kumar S., Lata K., Mukhopadhyay S., Mukherjee T.K.: Role ofestrogen receptors in pro-oxidative and anti-oxidative actions of estrogens:a perspective. Biochim. Biophys. Acta, 2010; 1800: 1127-1135 Google Scholar

  57. Lee H., Yoon Y.: Mitochondrial fission: regulation and ER connection.Mol. Cells, 2014; 37: 89-94 Google Scholar

  58. Lee L.M., Cao J., Deng H., Chen P., Gatalica Z., Wang Z.Y.: ER-α36,a novel variant of ER-α, is expressed in ER-positive and – negativehuman breast carcinomas. Anticancer Res., 2008; 28: 479-483 Google Scholar

  59. Levin E.R.: Extranuclear steroid receptors are essential for steroidhormone actions. Annu. Rev. Med., 2015; 66: 271-280 Google Scholar

  60. Levin E.R.: Plasma membrane estrogen receptors. Trends Endocrinol.Metab., 2009; 20: 477-482 Google Scholar

  61. Li L., Haynes M.P., Bender J.R.: Plasma membrane localizationand function of the estrogen receptor α variant (ER46) in humanendothelial cells. Proc. Natl. Acad. Sci. USA, 2003; 100: 4807-4812 Google Scholar

  62. Liao T.L., Tzeng C.R., Yu C.L., Wang Y.P., Kao S.H.: Estrogenreceptor-β in mitochondria: implications for mitochondrial bioenergeticsand tumorigenesis. Ann. NY Acad. Sci., 2015; 1350: 52-60 Google Scholar

  63. Liu P., Rudick M., Anderson R.G.: Multiple functions of caveolin-1.J. Biol. Chem., 2002; 277: 41295-41298 Google Scholar

  64. Long J., He P., Shen Y., Li R.: New evidence of mitochondriadysfunction in the female Alzheimer’s brain: deficiency of estrogenreceptor-β. J. Alzheimer’s Dis., 2012; 30: 545-558 Google Scholar

  65. Luconi M., Francavilla F., Porazzi I., Macerola B., Forti G., Baldi E.:Human spermatozoa as a model for studying membrane receptorsmediating rapid nongenomic effects of progesterone and estrogens.Steroids, 2004; 69: 553-559 Google Scholar

  66. Marino M., Ascenzi P.: Membrane association of estrogen receptorα and β influences 17β-estradiol-mediated cancer cell proliferation.Steroids, 2008; 73: 853-858 Google Scholar

  67. Marino M., Ascenzi P., Acconcia F.: S-palmitoylation modulatesestrogen receptor α localization and functions. Steroids, 2006; 71:298-303 Google Scholar

  68. Márquez D.C., Pietras R.J.: Membrane-associated binding sitesfor estrogen contribute to growth regulation of human breast cancercells. Oncogene, 2001; 20: 5420-5430 Google Scholar

  69. Maselli A., Pierdominici M., Vitale C., Ortona E.: Membrane lipidrafts and estrogenic signalling: a functional role in the modulationof cell homeostasis. Apoptosis, 2015; 20: 671-678 Google Scholar

  70. Mattingly K.A., Ivanova M.M., Riggs K.A., Wickramasinghe N.S.,Barch M.J., Klinge C.M.: Estradiol stimulates transcription of nuclearrespiratory factor-1 and increases mitochondrial biogenesis. Mol.Endocrinol., 2008; 22: 609-622 Google Scholar

  71. Milanesi L., Vasconsuelo A., de Boland A.R., Boland R.: Expressionand subcellular distribution of native estrogen receptor β in murineC2C12 cells and skeletal muscle tissue. Steroids, 2009; 74: 489-497 Google Scholar

  72. Milner T.A., Ayoola K., Drake C.T., Herrick S.P., Tabori N.E., McEwenB.S., Warrier S., Alves S.E.: Ultrastructural localization of estrogenreceptor β immunoreactivity in the rat hippocampal formation.J. Comp. Neurol., 2005; 491: 81-95 Google Scholar

  73. Moats R.K., Ramirez V.D.: Electron microscopic visualizationof membrane-mediated uptake and translocation of estrogenBSA:colloidalgold by Hep G2 cells. J. Endocrinol., 2000; 166: 631-647 Google Scholar

  74. Monje P., Boland R.: Subcellular distribution of native estrogenreceptor α and β isoforms in rabbit uterus and ovary. J. Cell. Biochem.,2001; 82: 467-479 Google Scholar

  75. Morley P., Whitfield J.F., Vanderhyden B.C., Tsang B.K., SchwartzJ.L.: A new, nongenomic estrogen action: the rapid release of intracellularcalcium. Endocrinology, 1992; 131: 1305-1312 Google Scholar

  76. Nadal-Serrano M., Pons D.G., Sastre-Serra J., Blanquer-RossellóM.M, Roca P., Oliver J.: Genistein modulates oxidative stress in breastcancer cell lines according to ERα/ERβ ratio: effects on mitochondrialfunctionality, sirtuins, uncoupling protein 2 and antioxidantenzymes. Int. J. Biochem. Cell Biol., 2013; 45: 2045-2051 Google Scholar

  77. Norfleet A.M., Thomas M.L., Gametchu B., Watson C.S.: Estrogenreceptor-α detected on the plasma membrane of aldehyde-fixedGH3/B6/F10 rat pituitary tumor cells by enzyme-linked immunocytochemistry.Endocrinology, 1999; 140: 3805-3814 Google Scholar

  78. Noteboom W.D., Gorski J.: Stereospecific binding of estrogens inthe rat uterus. Arch. Biochem. Biophys., 1965; 111: 559-568 Google Scholar

  79. Pappas T.C., Gametchu B., Watson C.S.: Membrane labeling estrogenreceptors identified by multiple antibody and impeded-ligandbinding. FASEB J., 1995; 9: 404-410 Google Scholar

  80. Patel H.H., Insel P.A.: Lipid rafts and caveolae and their rolein compartmentation of redox signaling. Antioxid. Redox Signal.,2009; 11: 1357-1372 Google Scholar

  81. Pedram A., Razandi M., Deschenes R.J., Levin E.R.: DHHC-7 and– 21 are palmitoylacyltransferases for sex steroid receptors. Mol.Biol. Cell, 2012; 23: 188-199 Google Scholar

  82. Pedram A., Razandi M., Levin E.R.: Nature of functional estrogen receptorsat the plasma membrane. Mol. Endocrinol., 2006; 20: 1996-2009 Google Scholar

  83. Pedram A., Razandi M., Lewis M., Hammes S., Levin E.R.: Membrane-localizedestrogen receptor α is required for normal organdevelopment and function. Dev. Cell, 2014; 29: 482-490 Google Scholar

  84. Pedram A., Razandi M., Sainson R.C., Kim J.K., Hughes C.C., LevinE.R.: A conserved mechanism for steroid receptor translocation tothe plasma membrane. J. Biol. Chem., 2007; 282: 22278-22288 Google Scholar

  85. Pietras R.J., Szego C.M.: Specific binding sites for oestrogen at theouter surfaces of isolated endometrial cells. Nature, 1977; 265: 69-72 Google Scholar

  86. Pons D.G., Nadal-Serrano M., Blanquer-Rossello M.M., SastreSerraJ., Oliver J., Roca P.: Genistein modulates proliferation and mitochondrialfunctionality in breast cancer cells depending on ERα/ERβ ratio. J. Cell. Biochem., 2014; 115: 949-958 Google Scholar

  87. Pratt W.B., Toft D.O.: Regulation of signaling protein functionand trafficking by the hsp90/hsp70-based chaperone machinery.Exp. Biol. Med., 2003; 228: 111-133 Google Scholar

  88. Psarra A.M., Solakidi S., Sekeris C.E.: The mitochondrion as a primarysite of action of steroid and thyroid hormones: presence andaction of steroid and thyroid hormone receptors in mitochondriaof animal cells. Mol. Cell. Endocrinol., 2006; 246: 21-33 Google Scholar

  89. Rao J., Jiang X., Wang Y., Chen B.: Advances in the understandingof the structure and function of ER-α36, a novel variant of humanestrogen receptor-α. J. Steroid Biochem. Mol. Biol., 2011; 127: 231-237 Google Scholar

  90. Razandi M., Alton G., Pedram A., Ghonshani S., Webb P., LevinE.R.: Identification of a structural determinant necessary for the localizationand function of estrogen receptor α at the plasma membrane.Mol. Cell. Biol., 2003; 23: 1633-1646 Google Scholar

  91. Razandi M., Oh P., Pedram A., Schnitzer J., Levin E.R.: ERs associatewith and regulate the production of caveolin: implications forsignaling and cellular actions. Mol. Endocrinol., 2002; 16: 100-115 Google Scholar

  92. Razandi M., Pedram A., Greene G.L., Levin E.R.: Cell membraneand nuclear estrogen receptors (ERs) originate from a single transcript: studies of ERα and ERβ expressed in Chinese hamster ovarycells. Mol. Endocrinol., 1999; 13: 307-319 Google Scholar

  93. Razandi M., Pedram A., Levin E.R.: Heat shock protein 27 is requiredfor sex steroid receptor trafficking to and functioning at theplasma membrane. Mol. Cell. Biol., 2010; 30: 3249-3261 Google Scholar

  94. Razandi M., Pedram A., Merchenthaler I., Greene G.L., Levin E.R.:Plasma membrane estrogen receptors exist and functions as dimers.Mol. Endocrinol., 2004; 18: 2854-2865 Google Scholar

  95. Sanchez M.I., Shearwood M.J., Chia T., Davies S.M., Rackham O.,Filipovska A.: Estrogen-mediated regulation of mitochondrial geneexpression. Mol. Endocrinol., 2015; 29: 14-27 Google Scholar

  96. Sarkar S., Jun S., Simpkins J.W.: Estrogen amelioration of Aβ-induced defects in mitochondria is mediated by mitochondrial signalingpathway involving ERβ, AKAP and Drp1. Brain Res., 2015;1616: 101-111 Google Scholar

  97. Sastre-Serra J., Nadal-Serrano M., Pons D.G., Roca P., Oliver J.:Mitochondrial dynamics is affected by 17β-estradiol in the MCF-7breast cancer cell line. Effects on fusion and fission related genes.Int. J. Biochem. Cell Biol., 2012; 44: 1901-1905 Google Scholar

  98. Sastre-Serra J., Nadal-Serrano M., Pons D.G., Roca P., Oliver J.:The over-expression of ERβ modifies estradiol effects on mitochondrialdynamics in breast cancer cell line. Int. J. Biochem. Cell Biol.,2013; 45: 1509-1515 Google Scholar

  99. Schmidt B.M., Gerdes D., Feuring M., Falkenstein E., Christ M.,Wehling M.: Rapid, nongenomic steroid actions: a new age? Front.Neuroendocrinol., 2000; 21: 57-94 Google Scholar

  100. Sheldahl L.C., Shapiro R.A., Bryant D.N., Koerner I.P., DorsaD.M.: Estrogen induces rapid translocation of estrogen receptor β,but not estrogen receptor α, to the neuronal plasma membrane.Neuroscience, 2008; 153: 751-761 Google Scholar

  101. Simpkins J.W., Yang S.H., Sarkar S.N., Pearce V.: Estrogen actionson mitochondria – physiological and pathological implications.Mol. Cell. Endocrinol., 2008; 290: 51-59 Google Scholar

  102. Solakidi S., Psarra A.M., Nikolaropoulos S., Sekeris C.E.: Estrogenreceptors α and β (ERα and ERβ) and androgen receptor (AR) inhuman sperm: Localization of ERβ and AR in mitochondria of themidpiece. Hum. Reprod., 2005; 20: 3481-3487 Google Scholar

  103. Solakidi S., Psarra A.M., Sekeris C.E.: Differential subcellulardistribution of estrogen receptor isoforms: localization of ERα inthe nucleoli and ERβ in the mitochondria of human osteosarcomaSaOS-2 and hepatocarcinoma HepG2 cell lines. Biochim. Biophys.Acta – Mol. Cell Res., 2005; 1745: 382-392 Google Scholar

  104. Stirone C., Duckles S.P., Krause D.N., Procaccio V.: Estrogenincreases mitochondrial efficiency and reduces oxidative stress incerebral blood vessels. Mol. Pharmacol., 2005; 68: 959-965 Google Scholar

  105. Su X., Xu X., Li G., Lin B., Cao J., Teng L.: ER-α36: a novel biomarkerand potential therapeutic target in breast cancer. Onco TargetsTher., 2014; 7: 1525-1533 Google Scholar

  106. Szego C.M., Davis J.S.: Adenosine 3’,5›-monophosphate in ratuterus: acute elevation by estrogen. Proc. Natl. Acad. Sci. USA, 1967;58: 1711-1718 Google Scholar

  107. Tesarik J., Mendoza C.: Nongenomic effects of 17 β-estradiolon maturing human oocytes: relationship to oocyte developmentalpotential. J. Clin. Endocrinol. Metab., 1995; 80: 1438-1443 Google Scholar

  108. Toda K., Takeda K., Okada T., Akira S., Saibara T., Kaname T.,Yamamura K., Onishi S., Shizuta Y.: Targeted disruption of the aromataseP450 gene (Cyp19) in mice and their ovarian and uterine responsesto 17β-oestradiol. J. Endocrinol., 2001; 170: 99-111 Google Scholar

  109. Toran-Allerand C.D., Guan X., MacLusky N.J., Horvath T.L., DianoS., Singh M., Connolly E.S., Nethrapalli I.S., Tinnikov A.A.: ER-X:a novel, plasma membrane-associated, putative estrogen receptorthat is regulated during development and after ischemic brain injury.J. Neurosci., 2002; 22: 8391-8401 Google Scholar

  110. Vadlamudi R.K., Kumar R.: Functional and biological propertiesof the nuclear receptor coregulator PELP1/MNAR. Nucl. Recept.Signal., 2007; 5: e004 Google Scholar

  111. Van Itallie C.M., Dannies P.S.: Estrogen induces accumulationof the mitochondrial ribonucleic acid for subunit II of cytochromeoxidase in pituitary tumor cells. Mol. Endocrinol., 1988; 2: 332-337 Google Scholar

  112. Vic P., Vignon F., Derocq D., Rochefort H.: Effect of estradiol onthe ultrastructure of the MCF7 human breast cancer cells in culture.Cancer Res., 1982; 42: 667-673 Google Scholar

  113. Walter P., Green S., Greene G., Krust A., Bornert J.M., JeltschJ.M., Staub A., Jensen E., Scrace G., Waterfield M., Chambon P.: Cloningof the human estrogen receptor cDNA. Proc. Natl. Acad. Sci. USA,1985; 82: 7889-7893 Google Scholar

  114. Wang Z., Zhang X., Shen P., Loggie B.W., Chang Y., DeuelT.F.: Identification, cloning, and expression of human estrogenreceptor-α36, a novel variant of human estrogen receptor-α66. Biochem.Biophys. Res. Commun., 2005; 336: 1023-1027 Google Scholar

  115. Warner M., Gustafsson J.Å.: Nongenomic effects of estrogen:why all the uncertainty? Steroids, 2006; 71: 91-95 Google Scholar

  116. Watanabe T., Inoue S., Hiroi H., Orimo A., Kawashima H., MuramatsuM.: Isolation of estrogen-responsive genes with a CpG island library. Mol. Cell. Biol., 1998; 18: 442-449 Google Scholar

  117. Yang S.H., Liu R., Perez E.J., Wen Y., Stevens S.M., Valencia T.,Brun-Zinkernagel A.M., Prokai L., Will Y., Dykens J., Koulen P., SimpkinsJ.W.: Mitochondrial localization of estrogen receptor β. Proc.Natl. Acad. Sci. USA, 2004; 101: 4130-4135 Google Scholar

  118. Zhai P., Eurell T.E., Cooke P.S., Lubahn D.B., Gross D.R.: Myocardialischemia-reperfusion injury in estrogen receptor-α knockoutand wild-type mice. Am. J. Physiol. Heart Circ. Physiol., 2000; 278:H1640-H1647 Google Scholar

  119. Zhai P., Eurell T.E., Cotthaus R., Jeffery E.H., Bahr J.M., GrossD.R.: Effect of estrogen on global myocardial ischemia-reperfusioninjury in female rats. Am. J. Physiol. Heart Circ. Physiol., 2000; 279:H2766-H2775 Google Scholar

  120. Zhai P., Eurell T.E., Cotthaus R.P., Jeffery E.H., Bahr J.M., GrossD.R.: Effects of dietary phytoestrogen on global myocardial ischemiareperfusioninjury in isolated female rat hearts. Am. J. Physiol. HeartCirc. Physiol., 2001; 281: H1223-H1232 Google Scholar

estrogen • 512 views
ADD COMMENTlink

Login before adding your answer.

Traffic: 105 users visited in the last hour

Use of this site constitutes acceptance of our User Agreement and Privacy Policy.